Data collection

Siemens P3 four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction: none 2507 measured reflections 2355 independent reflections 2354 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R=0.0305$
$w R\left(F^{2}\right)=0.0704$
$S=0.943$
2354 reflections
367 parameters
H atoms: see below
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 14$
$l=-14 \rightarrow 13$
2 standard reflections every 100 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+0.0446 P^{2}\right], \\
& P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& \Delta \rho_{\max }=0.160 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.155 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

O2-C3	1.213 (2)	$\mathrm{Cll}-\mathrm{Cl} 6$	1.533 (2)
$\mathrm{N} 1-\mathrm{Cl} 5$	1.465 (2)	$\mathrm{C} 11-\mathrm{C} 2$	1.540 (3)
$\mathrm{N} 1-\mathrm{C} 12$	1.472 (2)		
C15-N1-C12	108.6 (1)	C16-C11-C2	112.2 (2)
Cl5-N1-Cl1	111.9 (1)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	122.4 (2)
C12-N]-Cl1	116.9 (2)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	122.0 (2)
N1-C11-C16	113.8 (1)	C4-C3-C2	115.6 (2)
$\mathrm{N} 1-\mathrm{Cl} 1-\mathrm{C} 2$	111.7 (1)		
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 21$	-71.0 (3)	C15-N1-C11-C16	-62.1 (2)
$\mathrm{N} 1-\mathrm{Cl1-C16-C17}$	105.8 (2)	C16-C11-C2-C3	68.3 (2)
$\mathrm{C} 12-\mathrm{NI}-\mathrm{Cll}-\mathrm{Cl} 16$	63.9 (2)	C16-C11-C2-Cl	-168.6 (2)

The structure was solved by direct phase determination and refined by full-matrix least-squares techniques on F^{2}. The refinement was completed with anisotropic displacement parameters for all atoms except H atoms which were generated geometrically and refined isotropically.
Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1038). Services for accessing these data are described at the back of the journal.

References

Burgemeister, T., Özarslan, Ö., Ertan, M., Akgün, H. \& Wiegrebe, W. (1994). Arch. Pharm. (Weinheim), 327, 785-787.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Özarslan, Ö., Ertan, M., Sayraç, T., Akgün, H., Demirdamar, R. \& Gümüşel, B. (1994). Arch. Pharm. (Weinheim), 327, 525-528.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Three trans-2,6-Diaryl Derivatives of Oximes of N -Hydroxy-4-piperidone

Eduardo Díaz, Héctor Barrios and Rubén A. Toscano

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-213 México, DF, 04510 México. E-mail: toscano@servidor.unam.mx
(Received 9 April 1996; accepted 19 February 1997)

Abstract

In the solid state, trans-2,6-diphenyl-4-(hydroxyimino)piperidinol, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, (1), trans-2,6-bis(1-methyl-pyrrol-2-yl)-4-(hydroxyimino)piperidinol, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$, (2), and trans-2,6-bis(thien-2-yl)-4-(hydroxyimino)piperidinol, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, (3), adopt conformations with an axial OH substituent on the ring N atom, in contrast to the preference for an equatorial conformation in solution. Molecules of all three structures are held together in chains by hydrogen bonding.

Comment

We have previously reported a ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR study of the conformation of several oximes of 2,6 -diaryl-piperidin-4-ones in solution (Díaz et al., 1997). The crystal structures of three of these compounds, the diphenyl, (1), bis(1-methylpyrrol-2-yl), (2), and bis(thien-$2-\mathrm{yl})$, (3), derivatives have been determined in order to establish their preferred conformation in the solid state.

(1)

(2)

(3)

The molecular structures of compounds (1), (2) and (3) are shown in Figs. 1, 2 and 3, respectively. In each case, the hydroxyimino group displays a twofold orientational disorder. The crystals thus comprise a mixture of two forms, differing only in the orientation
of the hydroxyl group, as in the case of the oximes of cycloundecanone and cyclododecanone (Groth, 1979).

The piperidine rings have a slightly distorted chair conformation very similar to those found by Sekar, Parthasarathy \& Radhakrishnan (1990, 1993), and by Zongchao, Wilson, Arora \& Dimmrock (1988) for related compounds. The orientation of the trans substituents at C2 and C6 is approximately the same in each case. The dihedral angle between the planes of the aromatic substituents is 65.6 (1) in (1), 65.0 (2) in (2) and $46.3(3)^{\circ}$ in (3).

The axial position of the OH substituent on the ring N atom in these structures contrasts with the preference

Fig. 1. Structure of (1) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Structure of (2) with displacement ellipsoids drawn at the 30% probability level.

Fig. 3. Structure of (3) with displacement ellipsoids drawn at the 30% probability level.
in solution for the equatorial conformer; from NMR evidence at 203 K , the equatorial:axial ratio is $70: 30 \%$ (Díaz et al., 1997).

In the crystal structures, the molecules are arranged in chains by centrosymmetric pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving both the $\mathrm{N}-\mathrm{OH}$ groups of the hydroxyimino and N -hydroxy entities alternately.

Experimental

The parent diarylidene acetones were prepared according to the method of Quilico (1962). For the preparation of compounds (1)-(3), 15.3 mmol of hydroxylamine hydrochloride and 33.9 mmol of the diarylidene acetone were successively added to a stirred solution of 64.5 mmol of potassium hydroxide in a minimum volume of 95% ethanol. The solution was refluxed until thin-layer chromatography monitoring indicated completion of the reaction. Products were purified by silica-gel column chromatography and the cis- and trans isomers (obtained in equal yields) were separated by fractional crystallization from acetone-hexane.

Compound (1)

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \quad \mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation
$M_{r}=282.33$
Monoclinic
$P 2_{1} / n$
$a=9.890$ (3) \AA
$b=10.437(3) \AA$
$c=14.790(4) \AA$
$\beta=97.75$ (2) ${ }^{\circ}$
$V=1512.7(8) \AA^{3}$
$Z=4$
$D_{x}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=5.1-13.3^{\circ}$
$\mu=0.660 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Irregular
$0.30 \times 0.18 \times 0.14 \mathrm{~mm}$
Colourless

Data collection
Nicolet $P 3 / F$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
2033 measured reflections
1902 independent reflections 1353 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.035$

Refinement

Refinement on F^{2}
$R(F)=0.050$
$w R\left(F^{2}\right)=0.128$
$S=1.188$
1902 reflections
207 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0737 P)^{2}\right.$ $+0.2342 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$

Compound (2)

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=288.35$
Monoclinic
$P 2_{1} / c$
$a=10.169$ (5) \AA
$b=14.129$ (8) \AA
$c=10.039$ (6) \AA
$\beta=90.67$ (4) ${ }^{\circ}$
$V=1442.3(14) \AA^{3}$
$Z=4$
$D_{x}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Nicolet $P 3 / F$ diffractometer

$\theta / 2 \theta$ scans

Absorption correction: none
1587 measured reflections
1477 independent reflections
1395 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.096$

Refinement

Refinement on F^{2}
$R(F)=0.090$
$w R\left(F^{2}\right)=0.256$
$S=1.130$
1477 reflections
207 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.2085 P)^{2}\right.$ $+0.894 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.003$
$\theta_{\text {max }}=55.06^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 11$
$l=-15 \rightarrow 15$
2 standard reflections every 98 reflections intensity decay: 3\%
$\Delta \rho_{\text {max }}=0.140 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.194 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0032 (6)

Scattering factors from International Tables for Crystallography (Vol. C)

$\mathrm{Cu} K \alpha$ radiation

$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=5.4-14.3^{\circ}$
$\mu=0.738 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism
$0.52 \times 0.32 \times 0.26 \mathrm{~mm}$
Light yellow
$\theta_{\text {max }}=49.99^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 0$
$l=0 \rightarrow 9$
2 standard reflections every 98 reflections intensity decay: 3%

$$
\Delta \rho_{\max }=0.467 \mathrm{e}^{-3}
$$

$\Delta \rho_{\text {min }}=-0.398 \mathrm{e}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.012 (3)

Scattering factors from International Tables for Crystallography (Vol. C)

Compound (3)

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=294.38$
Triclinic
$P \overline{1}$
$a=9.479(3) \AA$
$b=10.229$ (3) \AA
$c=8.625(2) \AA$
$\alpha=108.98(2)^{\circ}$
$\beta=112.91$ (2) ${ }^{\circ}$
$\gamma=91.69(2)^{\circ}$
$V=716.6(4) \AA^{3}$
$Z=2$
$D_{x}=1.364 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=4.15-16.65^{\circ}$
$\mu=3.369 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Truncated square pyramid
$0.40 \times 0.32 \times 0.12 \mathrm{~mm}$
Colourless

Nicolet P3/F diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
1357 reflections with

$$
I>2 \sigma(I)
$$

$$
R_{\mathrm{int}}=0.044
$$

$$
\theta_{\max }=50.05^{\circ}
$$

$$
h=0 \rightarrow 9
$$

Stuart, 1983)

$$
k=-10 \rightarrow 10
$$

$T_{\text {min }}=0.38, T_{\text {max }}=0.67$

$$
l=-8 \rightarrow 7
$$

1592 measured reflections
1475 independent reflections
2 standard reflections every 98 reflections intensity decay: 3\%

Refinement

Refinement on F^{2}
$R(F)=0.070$
$w R\left(F^{2}\right)=0.191$
$S=1.100$
1475 reflections
226 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1454 P)^{2}\right.$
$+0.524 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.091$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.380 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.390 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.011 (3)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

Compound	$D-\mathrm{H} \cdots A$	D \cdots A	D-H. . A
(1)	O7-H7 . . Nl^{1}	2.831 (3)	159
	O9A-H9. . N8 ${ }^{\text {" }}$	2.792 (5)	156
(2)	O7-H7 . .Ni ${ }^{\text {II }}$	2.870 (4)	171
	O9A-H9 . . N8 ${ }^{1}$	2.835 (6)	169
(3)	O7-H7 . $\mathrm{NI}^{\text {i }}$	2.817 (4)	152
	O9A-H9 . ${ }^{\text {N }} 8^{11}$	2.738 (6)	140

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 2-y, 1-z$: (iii) $1-x, 1-y,-z ;$ (iv) $1-x,-y, 1-z$.
The rather low $\theta_{\text {max }}$ values were imposed by the geometry of a diffractometer modified for macromolecular studies. Disorder contributes to the relatively high residual factors.

The oxime OH group was found to be disordered in each structure and was refined in two alternative positions with complementary occupancy factors. In the structure of (3), one of the thienyl substituents was also refined with twofold orientational disorder corresponding to 180° rotation about the C6-C19 bond, with the assistance of geometry
and displacement-parameter restraints. Distance restraints were applied to refined hydroxy H atoms; other H atoms were constrained with a riding model and $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

For all compounds, data collection: Nicolet P3 Software (Nicolet XRD Corporation, 1980); cell refinement: Nicolet P3 Software; data reduction: Nicolet P3 Software; program(s) used to solve structures: SHELXTLIPC (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1113). Services for accessing these data are described at the back of the journal.

References

Díaz, E., Barrios, H., del Río, F., Enríquez, R. G., Reynolds, F. W., Aguilera, J. L. \& Becerril, R. (1997). Magn. Reson. Chem. Submitted.
Groth, P. (1979). Acta Chem. Scand. Ser. A, 33, 503-513.
Nicolet XRD Corporation (1980). Nicolet P3 Software. Nicolet XRD Corporation, Cupertino, California, USA.
Quilico, A. (1962). The Chemistry of Heterocyclic Compounds, Vol. 17, edited by R. H. Wiley, p. 95. New York: Interscience.
Sekar, K., Parthasarathy, S. \& Radhakrishnan T. R. (1990). Acta Cryst. C46, 1338-1340.
Sekar, K., Parthasarathy, S. \& Radhakrishnan T. R. (1993). Acta Cryst. C49, 93-95.
Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Zongchao, J., Wilson, Q. J., Arora, V. K. \& Dimmrock, J. R. (1988). Acta Cryst. C44, 2114-2117.

Acta Cryst. (1997). C53, 1471-1472

9a-Trimethylsilyloctahydroquinolizinium Picrate

Jonathan M. White and Wal-Ying Tham
School of Chemistry, University of Melbourne, Parkville, Vic 3052, Australia. E-mail: j.white@chemistry.unimelb.edu.au

(Received 20 November 1996; accepted 22 April 1997)

Abstract

The title compound, $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NSi}^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, exists in the solid state in a cis-decalin configuration, with the trimethylsilyl substituent at a bridgehead position. There exists a hydrogen bond between the ammonium N H and the picrate O atom $[\mathrm{Nl}-\mathrm{Hl} 0.90(3), \mathrm{H} \cdots \mathrm{Ol}$, 2.03 (3) \AA and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 153(2)^{\circ} \mathrm{]}$.

Comment

The title compound, (1), exists in solution as a ca $1: 1$ mixture of the cis-, (la), and trans-decalin, (lb), configurations (White \& Tham, 1997); these are interconvertible by a sequence of proton transfer to the picrate anion, nitrogen inversion, then protonation again (see scheme below). The structure of (1) was determined in order to obtain information on its preferred configuration in the solid state. It was then proposed to make use of solid-state ${ }^{13} \mathrm{C}$ NMR in order to assign the signals of the cis-trans mixture in solution.

(lb)

The structure of (1), as depicted in Fig. 1, shows that it adopts a cis-decalin configuration in the solid state. The bridgehead trimethylsilyl substituent is in an equatorial position with respect to the ring defined by atoms $\mathrm{N} 1, \mathrm{C} 6, \mathrm{C} 5, \mathrm{C} 4, \mathrm{C} 3$ and C 2 , and axial to the ring defined by N1, C6, C7, C8, C9 and C10. As a result of the axial position of the trimethylsilyl substituent, one of the methyls (C 13) lies across the ring, resulting in close contacts between the H atoms attached to C 13 and the axial ring H atoms attached to C 8 and C 10 (H13A $\cdots \mathrm{H} 8 B 2.25$ and H13B $\cdots \mathrm{H} 10 A 2.21 \AA$). The strain arising from the close contacts results in opening of the $\mathrm{C} 13-\mathrm{Si}-\mathrm{C} 6$ bond angle to $118.2(1)^{\circ}$, well past the preferred tetrahedral value, presumably to minimize these repulsive interactions. The $\mathrm{Si}-\mathrm{C} 6-\mathrm{C} 7$ angle,

Fig. 1. ORTEPII (Johnson, 1976) diagram of (1). Displacement ellipsoids are drawn at the 20% probability level.

